Nonreciprocal band structure in exciton-polarized Floquet optical lattices – Nature Photonics

  • Griffith(DJ) and Schroeter(DF) Introduction to Quantum Mechanics (Cambridge University Press, 2018).

  • Kitakawa, T., Berg, E., Rudner, M. and Demler, E. Topological characterization of periodically driven quantum systems. physics. Revision B 82235114 (2010).

    ArticleADS Google Scholar

  • Dutt, A. et al. A single photonic chamber with two independent physically synthesized dimensions. science Chapter 3675964 (2020).

    ArticleADS Google Scholar

  • Fang, K., Yu, Z. & Fan, S. Realizing photonic effective magnetic field by controlling dynamic modulation phase. Nat.Photonics 6782787 (2012).

    ArticleADS Google Scholar

  • Ozawa, T. et al. Topological photonics. Revised Mod. physics. 91015006 (2019).

    ArticleADS MathSciNet Google Scholar

  • Nonetheless, the quantification of DJ particle transport. physics. Revision B No. 2760836087 (1983).

    ArticleADS MathSciNet Google Scholar

  • Rudner, MS and Lindner, NH Floquet Band structure engineering and nonequilibrium dynamics in topological insulators. Nat. Ph.D. in Physics. 2229244 (2020).

    Article Google Scholar

  • Xu, S. & Wu, C. Space-time crystals and space-time groups. physics. Pastor Wright. 120096401 (2018).

    ArticleADS MathSciNet Google Scholar

  • Fleury, R., Sounas, DL, Sieck, CF, Haberman, MR, and Al, A. science Chapter 343516519 (2014).

    ArticleADS Google Scholar

  • Lira, H. Electrically driven nonreciprocity due to interband photonic transitions on silicon wafers. physics. Pastor Wright. 109033901 (2012).

    ArticleADS Google Scholar

  • Sounas, DL & Al, A. Nonreciprocal photonics based on temporal modulation. Nat.Photonics 11774783 (2017).

    ArticleADS Google Scholar

  • Lindner, NH, Refael, G. and Galitski, V. Floquet topological insulators in semiconductor quantum wells. Nat. physics. 7490495 (2011).

    Article Google Scholar

  • Nassar, H. et al. Nonreciprocity in acoustic and elastic materials. Nat. Pastor Matt. 5667685 (2020).

    ArticleADS Google Scholar

  • Trainiti, G. & Ruzzene, M. Nonreciprocal elastic wave propagation in periodic structures of space-time. New Journal of Physics. 18083047 (2016).

    ArticleADS Google Scholar

  • Aditya Turin, A. F. et al. Topological properties of floret-wound ribbons in photonic lattices. physics. Pastor Wright. 130056901 (2023).

    ArticleADS Google Scholar

  • Fedorova, Z., Qiu, H., Linden, S. and Kroha, J. Topological transport quantization observed through dissipation in fast Thouless pumping. Nat. comminicate. 113758 (2020).

    ArticleADS Google Scholar

  • Weisbuch, C., Nishioka, M., Ishikawa, A. and Arakawa, Y. physics. Pastor Wright. 6933143317 (1992).

    ArticleADS Google Scholar

  • Byrnes, T., Kim, NY and Yamamoto, Y. Exciton-polaron condensates. Nat. physics. 10803813 (2014).

    Article Google Scholar

  • Schneider, C. et al. Exciton polarization trapping and potential landscape engineering. represents the program. physics. 80016503 (2017).

    ArticleADS Google Scholar

  • Jacquemin, T. et al. Direct observation of Dirac cones and flat bands in polariton honeycomb lattices. physics. Pastor Wright. 112116402 (2014).

    ArticleADS Google Scholar

  • Jamadi, O. et al. Direct observation of photon Landau levels and spiral edge states in strained honeycomb lattices. Light science. application. 9144 (2020).

    ArticleADS Google Scholar

  • Klimt, S. et al. Exciton polarized topological insulators. nature Chapter 562552556 (2018).

    ArticleADS Google Scholar

  • Xu, X. et al. Double-sided skin effect caused by interactions in exciton-polarized systems. physics. Revision B 103235306 (2021).

    ArticleADS Google Scholar

  • Mandal, S., Banerjee, R., Ostrovskaya, EA and Liew, Non-reciprocal transport of exciton polaritons in TCH non-Hermitian chains. physics. Pastor Wright. 125123902 (2020).

    ArticleADS Google Scholar

  • Xu, H. et al. Nonreciprocal exciton polarized ring lattice. physics. Revision B 104195301 (2021).

    ArticleADS Google Scholar

  • Sanvito, D. et al. All-optical control of quantum flows in polariton condensates. Nat.Photonics 5610614 (2011).

    ArticleADS Google Scholar

  • Roumpos, G., Nitsche, WH, Hfling, S., Forchel, A., and Yamamoto, Y. Gain-induced trapping of microcavity exciton polariton condensates. physics. Pastor Wright. 104126403 (2010).

    ArticleADS Google Scholar

  • Askytopoulos, A. et al. Polaron condensation in a photoinduced two-dimensional potential. physics. Revision B 88041308 (2013).

    ArticleADS Google Scholar

  • Cristoforini, P. et al. Optical superfluid phase transitions and trapping of polaron condensates. physics. Pastor Wright. 110186403 (2013).

    ArticleADS Google Scholar

  • Cherotchenko, ED, Sigurdsson, H., Askitopoulos, A. and Nalitov, AV Light-controlled polariton condensation molecules. physics. Revision B 103115309 (2021).

    ArticleADS Google Scholar

  • O’Hardy, H. et al. Tunable magnetic alignment between trapped exciton-polaron condensates. physics. Pastor Wright. 116106403 (2016).

    ArticleADS Google Scholar

  • Alyatkin, S., Tpfer, JD, Askitopoulos, A., Sigurdsson, H. and Lagoudakis, PG Optical control of coupling in polaron condensed lattices. physics. Pastor Wright. 124207402 (2020).

    ArticleADS Google Scholar

  • Pickup, L., Sigurdsson, H., Ruostekoski, J. and Lagoudakis, PG Synthetic band structure engineering of polariton crystals with non-Hermitian topological phases. Nat. comminicate. 114431 (2020).

    ArticleADS Google Scholar

  • O’Hardy, H. et al. Synchronous crossing of polaron condensates in weakly disordered lattices. physics. Revision B 97195109 (2018).

    ArticleADS Google Scholar

  • Ge, R., Broer, W. and Liew, TCH Floquet Topological polarons in semiconductor microcavities. physics. Revision B 97195305 (2018).

    ArticleADS Google Scholar

  • Gnusov, I. et al. Formation of quantum vortices in polaron condensate spinning barrel experiments. science. adverb. 9eadd1299 (2023).

    Article Google Scholar

  • del Valle-Inclan Redondo, Y. et al. Optically driven rotation of exciton polarized condensates. Nano Express. twenty three45644571 (2023).

    ArticleADS Google Scholar

  • Kavorkin, A. et al. Polaron condensation for classical and quantum computations. Nat. Ph.D. in Physics. 4435451 (2022).

    Article Google Scholar

  • Wei, M. et al. Room-temperature polaron condensates for light harvesting in organic semiconductors. Nat. comminicate. 137191 (2022).

    ArticleADS Google Scholar

  • Luo, S. et al. Room-temperature polariton condensates mimic classical spin chains. physics. Revised app. 13044052 (2020).

    ArticleADS Google Scholar

  • Nassar, H., Chen, H., Norris, AN, and Huang, GL Quantification of band tilt in modulated phononic crystals. physics. Revision B 97014305 (2018).

    ArticleADS Google Scholar

  • Berry, MV Quantum phase factors accompanying adiabatic changes. process. R. Suker. London. math. physics. science. Chapter 3924557 (1997).

    ADS MathSciNet Google Scholar

  • Cristofolini, P., Hatzopoulos, Z., Savvidis, PG and Baumberg, JJ Generation of quantified polaritons below the condensation threshold. physics. Pastor Wright. 121067401 (2018).

    ArticleADS Google Scholar

  • Piermarocchi, C., Tassone, F., Savona, V., Quattropani, A. and Schwendimann, P. Exciton formation rate in GaAs/AlXGa1X as a quantum well. physics. Revision B 5513331336 (1997).

    ArticleADS Google Scholar

  • Pieczarka, M. et al. Crossover from exciton polarization condensation to photon lasing in optical traps. choose.Express 301707017079 (2022).

    ArticleADS Google Scholar

  • Pieczarka, M. et al. Topological phase transitions in all-optical exciton polarized lattices. Optics 810841091 (2021).

    ArticleADS Google Scholar

  • Damen, T. C. et al. Dynamics of exciton formation and relaxation in GaAs quantum wells. physics. Revision B 4274347438 (1990).

    ArticleADS Google Scholar

  • Goldman, N. & Dalibard, J. Periodically driven quantum systems: effective Hamiltonians and engineering gauge fields. physics. Revision X 4031027 (2014).

    Google Scholar

  • Aidelsburger, M., Nascimbene, S. and Goldman, N. Artificial gauge fields in materials and engineering systems. CR Physics. 19394432 (2018).

    ArticleADS Google Scholar

  • Wang, L., Troyer, M. & Dai, X. Topological charge pumping in one-dimensional optical lattices. physics. Pastor Wright. 111026802 (2013).

    ArticleADS Google Scholar

  • Lohse, M., Schweizer, C., Zilberberg, O., Aidelsburger, M., and Bloch, I. Nat. physics. 12350354 (2016).

    Article Google Scholar

  • Nakajima, S. et al. Topologically unconscious pumping of ultracold fermions. Nat. physics. 12296300 (2016).

    Article Google Scholar

  • Fu, Q., Wang, P., Kartashov, Y. V., Konotop, V. V. and Ye, F. physics. Pastor Wright. 128154101 (2022).

    ArticleADS Google Scholar

  • Rechtsman, M. C. et al. Photonic Floquet Topological Insulator. nature Chapter 496196200 (2013).

    ArticleADS Google Scholar

  • Hu, J. et al. BardeenCooperSchrieffer Polariton laser in the system. physics. Revision X 11011018 (2021).

    Google Scholar

  • Pedregosa, F. et al. Scikit-learn: Machine learning in Python. J. Mach. study. resource. 1228252830 (2011).

    Mathematical Sciences Network Google Scholar

  • del Valle Inclan Redondo, Y. et al. Exciton Polarization Floquet Non-reciprocal band structure in optical lattices. FIG tree https://doi.org/10.6084/m9.figshare.25217435 (2024).

  • del Valle Inclan Redondo, Y. Microcavity. GitHub https://github.com/YagoDel/microcavities (2023).

  • #Nonreciprocal #band #structure #excitonpolarized #Floquet #optical #lattices #Nature #Photonics
    Image Source : www.nature.com

    Leave a Comment